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Abstract. Mathematical programs, that become convex programs after "freezing" some variables, 
are termed partly convex. For such programs we give saddle-point conditions that are both necessary 
and sufficient that a feasible point be globally optimal. The conditions require "cooperation" of the 
feasible point tested for optimality, an assumption implied by lower semicontinuity of the feasible set 
mapping. The characterizations are simplified if certain point-to-set mappings satisfy a "sandwich 
condition". 
The tools of parametric optimization and basic point-to-set topology are used in formulating both 
optimality conditions and numerical methods. In particular, we solve a large class of Zerrnelo's nav- 
igation problems and establish global optimality of the numerical solutions. 
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1. In troduct ion  

Consider the mathematical program 

( P )  Min f ( z )  
S.t. 

fi(z) < 0, i �9 7, = {1,...,m), 

where f ,  f f  : R N --+ R, i �9 T ~ are continuous functions. After splitting the variable 
z �9 R N into z = (x, 0), where x �9 R n, 0 �9 R p, n + p = N ,  the program (P )  is 
rewritten as 

(P, 0) Min f ( x , O )  
SA. 

f~ (z ,o )  <<. o, i E p .  

If, for every 0, the functions f ( . ,  0), f i ( . ,  0) : R ~ --+ R, i E 79 are convex, then 
(P )  is termed a partly convex program (abbreviated: PCP) relative to the splitting 
z =  (x, 0) 

Research partly supported by NSERC of Canada. 
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Many real life problems can be formulated as PCPs. They include the classical 
navigation problems of Zermelo [23, also see Section 8 below], optimal design of 
multi-stage heat exchangers in chemical engineering (see [2, 28]), the problem of 
how to increase capacities of machines to obtain a higher profit in a textile mill 
(see [5, 28]), pooling and blending in oil refinery (see [7]) and problems from 
chemical physics to determine a configuration of clusters of atoms and molecules 
that minimizes the Lennard-Jones interaction potential (see [12]). 

Note that every convex program is a PCP relative to an arbitrary splitting. What 
makes a general PCP essentially different from convex programs is nonconvexity 
of the feasible set and the fact that local and global optima may not coincide. 
Moreover (as in Zermelo's problems) the feasible set of a PCP may consist of 
disjoint subsets. The main objective of this paper is to study and characterise 
global and local optimality of a feasible point in PCP and apply the results to 
the Zerrnelo navigation problems. Let us recall that the first and second order 
optimality conditions from the literature provide only partial results, i.e., either 
necessary or sufficient conditions for local optimality but not both. Practical results 
on characterizing global optimality are virtually nonexistent. (See [4, 9].) 

In order to formulate optimality conditions we associate, with every feasible 
point, a region that permits testing of global optimality by a saddle-point condition. 
The size of that region is a measure of "cooperation" of the feasible point. Global 
optimality is characterized in Section 3. Points that are local (but not global) optima 
are identified as nonoptimal. The characterization is simplified when three point- 
to-set mappings satisfy a "sandwich condition", introduced and studied in Section 
4. An application to convex programming is given in Section 5. An exact penalty 
function for a PCP is given in Section 6. The global optima of the exact penalty 
function and of the PCP coincide. Optimal solutions of PCP can also be calculated 
by methods adapted from input optimization. We formulate such methods in Section 
7 and use them in Section 8 to solve classic navigation problems ofZermelo. To 
characterize local optimality of z* = (x*, 0") we strengthen the local cooperation 
requirement by assuming lower semicontinuity of the feasible set mapping and 
uniqueness of the optimal solution x* of the convex program (P, 0'), in Section 9. 
Finally, the results are applied to partly linear programs with equality constraints, 
in Section 10. 

The classification of feasible points by their "cooperation" (Definition 2.1), the 
sandwich condition (Definition 4.1), and the characterizations of global optimality 
(Theorems 3.1, 4.4 and 6. I) appear to be new. The result on local optima (Theorem 
9.1) was recently given in (not readily available) conference proceedings [28] (see 
also [27]) and it is included here for the sake of completeness. The numerical 
methods for solving PCP are presented here in their primitive forms primarily 
as a means for calculating points to be checked for local and global optimality. 
They appear to work well for Zermelo's problems. More general and sophisticated 
formulations are currently being studied in [18] using the recent results from [19] 
and [26]. 
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The idea to use point-to-set mappings in a study of global optimality is not 
new. Indeed, it is well known (see, e.g., [21, 22]) that a local minimum of a 
function is also global, if the feasible set mapping, relative to the right-hand side 
perturbations, is lower semi-continuous. The importance of lower semicontinuity in 
characterizations of local optima in parametric optimization has been demonstrated 
in, e.g., [25]. This paper reconfirms that, in order to characterize global and local 
optima in nonconvex optimization, in addition to linear algebra and calculus, one 
also needs some basic tools from point-to-set topology. 

2. Cooperation of Feasible Points 

We will study optimality of a feasible point 

z � 9 1 4 9  N:P(z)<0, i�9 
using the notion of "cooperative" feasible points. With each feasible point we will 
associate a region of the feasible set Z where the point can be tested for global 
optimality using a saddle-point condition. First, let us introduce some tools. 

Consider a PCP in the form (P, 0). For every fixed 0 define the feasible set 

F(O) = {x : f (x, O) <.< O, i �9 P) .  

Let Y denote all those O for which F(O) exists, i.e. 

Y = {0:  F(O) # r 

An important tool in our study is the "minimal index set of active constraints" 
defined, for every 0 �9 .T, by 

P=(O) = { i � 9 1 4 9  f i ( x , O ) = O } .  

If we denote the set of active constraints at x �9 F(O) by 

~'(x,O) = {i �9 P : f l (x,O) = O} 

then one can identify 

v--(e)= N 
=~F(O) 

This set identifies the constraints that are active on the entire feasible set F(O). 
(For an algorithm that calculates :P= (0) at a fixed 0, see, e.g., [1, 4].) 

For every feasible point z* = (x*, 0*) �9 Z we first construct the set 

S(0") = {0 �9 J=: P= (e )  C ~'=(0")} 

and then consider the point-to-set mapping ~ : R N ~ Z,  defined by 

~2 : z* --+ O(z*) = {z  = (x,O) : x �9 F(0) ,0  �9 S(0")}. 

Note that O(z*) • 0 and ~(z*) C Z for every z* �9 Z. 
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Fig. 1. Cooperation of feasible points. 

DEFINITION 2.1. Consider a PCP in the form (P, 0). We say that a feasible point 
z* = (x*, 0") is globally cooperative if 

~(z*)  = z .  

The point z* is locally cooperative if 9 v n N(O*) c S(O*), in which case 

�9 (z*) = {z = (x,O):x 6 F(O),O 6 S(O*)n U(0*)}  

where N(O*) is some neighbourhood of 0". 
Finally, the point is uncooperative if 0* is not the only point in 9 c and if 

S(O*) = {0"}, i.e., 

�9 (z*) = {~ = (~, o*) : ~  ~ F(o*)} .  �9 
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Examples of three types of cooperation are given further below in the text. Some 
typical situations are depicted in Figure 1. In (a), (b) and (c) every feasible point is 
locally cooperative. The heavily marked points, and only these points, are globally 
cooperative. The origin in (d), and only this point, is uncooperative. Every other 
feasible point is locally cooperative. (See Example 3.3 for details.) 

Remarks. (i) It is well known (see [25, 26]) that for lower semicontinuous point- 
to-set feasible set mapping at the 0 level: F �9 0 --+ F(#) ,  the set S(0*) contains 
a neighbourhood of 0". Therefore, for such programs, every feasible point is at 
least locally cooperative. If F is not lower semicontinuous at 0* E .7 r, then such a 
neighbourhood may not exist in which case every point z* E { (x, 0") �9 x E F (0") }, 
is noncooperative. (A point may be cooperative also in the absence of lower 
semicontinuity.) Recall that a point-to-set mapping F �9 R p --+ R n is said to 
be lower semicontinuous at 0* E R p if for every open set ,A c R ~ such that 
.,4 f3 F(0*) # 0 there exists a neighbourhood N(O*) of 0* such that ,4 M F(0) # 0 
for every 0 E N(O*). (See, e.g., [3, 25].) 

(ii) For the usual convex programs (the case z = x, 0 = r in PCP), S(O*) = 
implying that every feasible point is globally cooperative. 

(ii) For highly nonconvex programs (the case z = 0, x = 0 in PCP), we find 
that, at z* E Z, 

79=(O) = {i �9 P"  x �9 R ~ ~ fi(O*) = 0} 

= {i �9 7 , .  f ( o * )  = 0) 

= 79(z*) 

i.e., the set of active constraints. The set S(O*) is now 

{ z e z . p ( z ) c p = ( z * ) } .  

This condition is trivially satisfied (by continuity of the constraints). Hence every 
feasible point of such programs is locally cooperative. (In this paper we will not 
study this case.) 

(iv) If Slater's condition is satisfied at some 0* of a feasible z* = (x*,/9*) in a 
PCP, i.e., if 

3& �9 R n ~ fi(:~,0*) < O, i �9 79 

then 79=(0 *) = 0, implying P=(O) = 0 for every 0 in some neighbourhood 
of 0", by continuity of the constraints. In this case, again, z* is at least locally 
cooperative. 

(v) Local cooperation of a feasible point z* = (x*, 0") is guaranteed also in 
some other important situations, e.g., when the point-to-set mapping 

F = ' O ~ F = ( O ) = { x � 9  ~ ' f ( x , 0 ) = 0 ,  i � 9  

is lower semicontinuous at/9*. (See [17, 25].) 
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3. Characterizing Global Optimality 

Global optimality of z* = (x*, 0") is described in terms of the existence of a saddle 
point of the Lagrangian 

< L.  (z, u) = f ( z )  + E ui f i (z)  

over a set in R N determined by 0 E 2 r and x E F ,  (O), where 

F?(0) = {x  : f~(x,  o) < o, i ~ ~=(o*)) .  

The results (except in the linear case, see Section 10) become trivial if P = ~o= (0"). 
Denote by c the cardinality of the set 7~\T ~= (0") and by R~_ the non-negative orthant 
in R c. Our main result on optimality follows. 

THEOREM 3.1. Consider a partly convex program (P) in the form (P, O)and its 
feasible point z* = (x*, 0"), where x* is an optimal solution of the convex program 
(P, 0"). Assume that z* is globally cooperative. Then z* is a global minimum if, 
and only if, there exists a vector function 

~ .  ~: ~ ~(o) ~ R ~ + 

such that 

L<(z*,u) <~ L<(z*,~(O*)) <~ L<(z,~(O)) (3.1) 

for every 

z = (~,o) e { F ? ( O ) , 7 }  

and every u E R~_. 
Proof. Without loss of generality, let us assume that the first c indices are 

7~\7~=(0"). (Necessity:) Let z* = (x*, 0") be a global minimum, where x* is an 
optimal solution of (P, 0"). For every 0 E .T" construct the set 

{ } K I ( O ) =  y : y > l  f l (x 'O)  f o r a t l e a s t o n e x E F 2 ( O )  . 
. , o o , .  

fc(x,O) 

Also construct 

/ ( 2 =  y : y <  . . . . . .  i n R  c+1. 

0 
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Clearly both sets are convex. Moreover, for every 0 E .T': 

K~ (0) n K2 = o. 

Otherwise, for some 0 E Jr and s E F .  (0), we would have 

f i(~,  O) < o, i E 7,\7,:(0") 

i.e., we would have a feasible point 5 = (~, 0), such that f (2)  < f(z*). This 
violates global optimality of z* ! Hence we conclude that, for every 0 E ~', we can 
separate KI(0)  from K2, i.e., there exist ui = ~i(0) /> 0, i = 0, 1 , . . . ,  c, not all 
zero, such that 

C 

5of(z*)  ~< ~of(x,  0) + ~ f ~ ( x ,  O) (3.2) 
i=1 

for every x E F,(O). (Non-negativity of the multipliers follows by the usual 
arguments.) The crucial step now is to show that 50 = rio(0) > 0 for every 0 E 9 r .  
Indeed, if 5o(0) = 0 for some 0 E 5 r ,  then (3.2) would imply 

C 

fii(O)fi(x, O) >>. 0 (3.3) 
i=1 

for every x E F , ( 0 ) .  But we can choose 

= ~(0) �9 F(O) c F?(O) 

such that 

fi(e,O) < O, i �9 7,\7,=(0).  (3.4) 

Since z* is globally cooperative, we know that 

7,=(0) C 7'=(O*). (3.5) 

Now (3.4) and (3.5) imply 

fi(~, ~) < O, i �9 7"\7"=(0"). 

This contradicts (3.3), because fi~ ( 0 ) )  0, i �9 7"\7"=(0*) and not all equal to zero. 
Hence ri0(0) must be positive for every 0 �9 .T. The rest of the proof is standard: 
Without loss of generality we can assume that g0(0) = 1, in which case (3.2) 
becomes 

c 

f(z*) <. f(z) + ~ ~if~(z) (3.6) 
i = l  
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for some 5i = 5~(0) /> 0, i = 1 , . . . , c .  After specifying z = z* in (3.6), we find 
that 

c 

~ 5i(O*)fi(z *) >10. (3.7) 
i = 1  

By feasibility of z*, the inequality also points in the opposite direction. Hence (3.7) 
holds with equality. This implies that (3.6) can be written as 

<, 

The "missing" left-hand side inequality 

L<(z*,u) <~ L<(z*,~(O*)) 

for every u >/0, follows by feasibility of z*. 
(Sufficiency:) This part of the proof is straightforward and it does not depend 

on convexity or cooperation. Since z* is feasible, it follows from the left-hand side 
inequality in (3.1) that 

c 

Z ui(O*)fi(z*) = O. 
i = l  

The right-hand side inequality in (3.1) now implies 

c 

f (z*) <~ f ( z )  + E (ti(O)fi(z) 
i = 1  

<~ f ( z )  

for every feasible z. This completes the proof. �9 

The above theorem is useful in the situations where the dimension of 0 is low and 
the mapping F ~  is simple. The latter is the case, e.g., when Slater's condition holds 
at 0, in which case F + (0) = R '~. 

EXAMPLE 3.2. Consider the PCP: 

Min f = ( z l + l )  3 - z z  
s.t. 

f l  = z122_ l <~ O 
f2 = 1 - zl <<. 0 
f3 = - z2  <~ O. 

We want to know whether, say, z~' = 1, z~ = 1 is a global minimum. 
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After identifying zl = O and z2 = x, the program is rewritten as a partly convex 
(in fact partly linear) program: 

Min f = (O + l )3  - x 
s.t. 

f l  = xO - 1 <<. 0 

f 2 = l - 0 , < 0  

f 3  = - -x  ~< 0. 

We find that 

{2}, i f 0 =  1 
~P=(0)= 0 i f 0 >  1 

and hence S(0" )  = ~', so the point z* = (z~) is globally cooperative. We also 
need the set 

F . = ( 0 ) = { x ' I - 0 ~ < 0 } = R  for a n y 0 E b  r .  

The Lagrangian to be used is 

L < ( z ,  u) = f ( z )  + ulfl(z) + u3fa(z) 
= (1 + 0) 3 - x + u l ( x O -  1) + u3 ( -x ) .  

The point z~ = 1, z~ = 1 is a global optimum, according to Theorem 3.1, if, and 
only if, the saddle-point inequalities (3.1) hold for every 0/> 1 and every x. The 
condition becomes, after substitution, 

(1 + 0) 3 - ~1 § x ( - 1  + ~10 -- Q3) >/ 7 (3.8) 

for every 0 /> 1 and every x. The term in the parentheses must be equal to zero. 
Hence ~3 = - 1  + ilia, while fi3 = 0 since f3 is a nonactive constraint. This yields 

1 
f i l = ~  and ~ 3 = 0 .  

After substitution in (3.8) we conclude that, for this choice of multipliers, the 
saddle-point condition becomes 

1 
( 1 §  for ~.->1, 

clearly satisfied. This means that z~ = 1, z z = 1, is a global optimum. �9 

The following example shows that Theorem 3.1 does not generally hold for unco- 
operative points. 
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EXAMPLE 3.3. Consider the program studied in [15]: 

Min f = z lz3  
s.t. 

f l  = z 2  ~<0 

S -- - .< o 

f 3 =  max{0, z 2 + z ~ -  1} ~< 0. 

This is a PCP relative to the splitting zl = xl, z2 = x2, z3 = 0. The program is 
rewritten in the form (P, 0). One finds that 

{2,3} i f 0 = 0  
7~=(8)= {1,2,3} i f 0 # 0 .  

The point z~ = z~ = z~ = 0 is a global minimum, but a saddle point does not 
exist. Inded, the Lagrangian, determined at 0* = 0, is 

L<,(z, 72) = Xl 0 + 721Z2 

and the saddle-point condition on {F~ (0), ,7 r} reduces to 

0 
ul>/  ~ - - + o o  foraf ixed 0 > 0  as x , - -+0 .  

The reason for the nonexistence of a saddle point is that z* = 0 is not cooperative. 

The following example is interesting because it shows that the global optimality 
condition does not accept local optima as global (unless they are global optima). 

EXAMPLE 3.4. Consider the PCP: 

Min f = Zl z2 
s.t. 

z l~<l .  

After the splitting Zl = x, z2 = 0, the problem is rewritten as 

Min f = zO 2 
s.t. 

f l = x - l ~ < O .  

Since there is no 0 in the constraint, the point z~ : l, z~ = 0 is globally cooperative. 
The Lagrangian is here 

L,<(z, 72)= xO 2 +  x(x- 1). 
Consider the locally optimal point z~ = l, z~ = O. This point is also globally 
optimal, according to Theorem 3.1, if and only if, there exists ul = Ul (0)/> 0 such 
that 

(0 2 + U l ) X  --  72 1 ) 0 (3,9) 

for every x and every 0. But this is possible if, and only if, 0 2 = 0 for every 0 E R, 
which is absurd. 
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Remarks. (i) If z* is a global optimum of a PCP, but z* is locally (rather than 
globally) cooperative, then the saddle point (3.1) exists, but relative to the set 

z = (x,O) C { F ~ ( O ) , T n N ( O * ) }  (3.10) 

where N(O*) is some neighbourhood of 0". (This is a nontrivial remark since 
no neighbourhood of z* E R '~ is present in (3.9). The proof of this claim is 
similar to the proof of Theorem 3.1. The only essential difference is that this 
time one has to prove that fi0(O) > 0 for every O sufficiently close to 0". If this 
was not true, there would exist a sequence 0i __~ 0* such that fi(0 ~) = 0. The 
inequality (3.3) with 0 i, instead of ~, is now violated by the existence of a sequence 
x i = xi(O i) E F(O i) C F~(O i) such that 

fi(:ci, Oi) < 0, i E {79\~--(0~)} D {79\79-=(0")}). 

(ii) The above remark is important for convex programs. Namely, for an arbitrary 
splitting z = (x, O) of a convex program (P),  the feasible set mapping F : 0 --~ 
F(O) is lower semicontinuous. Hence any feasible z is locally cooperative and the 
local version of Theorem 3.1 applies, regardless of whether the Karush-Kuhn- 
Tucker (abbreviation below: KKT) conditions hold for (P).  (See Section 5 for 
details.) 

(iii) Often, a point z* tested for global optimality will be "almost" globally 
co-operative (e.g., co-operative relative to the interior of the feasible set or all but 
a few feasible points.) In this case its global optimality can be established by conti- 
nuity (lower semicontinuity) arguments at the disputed points. (For an illustration 
see Paragraph 8.3 below.) �9 

An unpleasant feature of the characterization is that the function fi may turn out to 
be necessarily discontinuous (even at a globally cooperative point), implying dis- 
continuity of the Lagrangian. This is demonstrated with the following example. 

EXAMPLE 3.5. Consider the program 

Min f = Zl 
s.t. 

f l  = _ z i g  2 ~ 0 

f 2  = _ z  1 _ Z2 ~ 0. 

After the splitting zl = z, z2 ---- 8 we identify the program as a PCP. Its global 
optimal solution is 

zf=x*=o, 

Since 79=(8 *) = {1} and 79=(8) = ~ i f0  # O*, 8 E .T', z* is globally cooperative. 
The Lagrangian is 

L<(z,  u) = x + u 2 ( - x  - O) 
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and the saddle-point inequalities reduce to 

x + 52(0) ( -x  - 0) /> 0 

for every 0/> 0 and every x E Fg(O), where 

J" R, i f0  = 0 F,(O) 
R+, if 0 > 0. 

Hence it follows that the unique multiplier function is 

1, i f0 = 0 
f i ( 0 )=  0, i f 0 r  

and 

L<,(x,O,u)={O, i f 0 = 0  
x, i f0  # 0. 

Note that, in this example, the mapping F is constant and hence lower semicontin- 
uous at 0* relative to ~'. 

Under suitable "input constraint qualifications" (see [ 17]), the reference set F g  (0) 
in Theorem 3.1 can be significantly simplified (e.g., replaced by the constant set 
F = (0")). A new such qualification is introduced in the next section. 

4. Global Optimality under the Sandwich Condition 

It is obvious that F(0)  C F.(O), 0 E 5 r at any fixed 0* E .T. The requirement that 
inserts the constant set F=(0  *) between F(O) and F.(O), 0 E )v will be termed 
the "sandwich condition". 

DEFINITION 4.1. Consider a PCP in the form (P, 0) and some 0* E 5 r .  If 

F(O) C F = ( 0  *) C Fg(O) for every 0 E Y" (4.1) 

then the constraints are said to satisfy the global sandwich condition (abbreviated: 
GSC) at 0". If the inclusions (4.1) hold for every 0 E ~" A N(O*), where N(O*) is 
some neighbourhood of 0", then the constraints satisfy the local sandwich condition 
(abbreviated: LSC) at 0". �9 

While GSC may appear rather restrictive, LSC is a rather weak condition. (Both 
GSC and LSC are satisfied in Examples 3.2, 3.3 and 3.4, but not in Example 3.6. 
LSC is trivially satisfied when the constraints of the program (P, 0") satisfy S later's 
condition.) 

The geometry of GSC is shown in Figure 2. Note that the two "layers" F2 = (0) 
and F = (0") coincide at 0". 

The following example shows that the notions of a globally cooperative point 
and of the global sandwich condition are essentially different. 
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/ F=C o') 

I II 

Fig. 2. The global sandwich condition. 

EXAMPLE 4.2. Consider a PCP with the single constraint 

f l  = x02 ~< 0. 

Here 

{1}, i f 0 = 0  
P=(0 )  = 0 otherwise. 

At 0* = 1, we find that F = ( 0  *) = F=(0)  = R for every 0. Hence GSC is satisfied. 
But, since 7~=(0) ~ T'=(1), z* = (z*, 1), z* ~< 0, cannot be globally cooperative. 

On the other hand, any ~, = (z, 0), x E R is globally cooperative. But, since 
F=(0)  = R and F,(O)  = ( - o e ,  0] for 0 7~ 0, 0 = 0 does not enjoy GSC. �9 

However, LSC implies not only local cooperation of feasible points but also other 
important information summarized in the theorem below. First, for every 0 E F 
denote by U the point-to-set mapping U : 0 --+ U(O) = {fi(0)}, where ~(0) are 
the multipliers in (3.1). 

THEOREM 4.3. Consider a PCP in the form (P, O) and some z* = (x*, 0") E Z. 
Suppose that the local sandwich condition is satisfied at 0". Then both point-to-set 
mappings F : 0 --+ F(O) and F ,  : 0 --~ F~(O) are lower semicontinuous at 0". 
Moreover, if  z* is a global (or local) minimum, then the sets U(O) are nonempty 
and uniformly bounded for  every 0 E jr  sufficiently close to O* and the point-to-set 
mapping U is closed at 0". 

Proof. Lower semicontinuity of F follows from the observation that F(O*) C 
F = (0") implying F (0") C Fff (0) in some U A N  (0'), where U (0") is a neighbour- 
hood of 0", by LSC. Now use [25, Theorem 3.1]. To prove lower semicontinuity of 
F ,  it is enough to observe that F.---(0") c F,--(0) in some feasible neighbourhood 
j r  N N ( O* ), by LSC. Hence 

. A n F , ( 0 * )  # 0 ~ . A n F ~ ( 0 )  # 0 

for every open set .,4, proving the claim. The results about U follow by lower 
semicontinuity of F and F ~ ;  see [15, Section 4]. �9 
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Our motivation for introducing the sandwich conditions is to strengthen the char- 
acterizations of optimality. Let us demonstrate how this is possible for a global 
optimum. 

THEOREM 4.4. Consider a PCP in the form (P, O) and its feasible point z* = 
(x*, 0") where x* is an optimal solution of the convex program (P, 0"). Assume 
that z* is globally cooperative and that the constraints enjoy the global sandwich 
property. Then z* is a global minimum if, and only if there exists a vector function 

: .7  --+ ~(0)  E R ~ + 

such that the saddle point inequalities (3.1) hold for every 

z=(~,O) e{F=(O*),7} 

and every u E R~_. 
Proof As in the proof of Theorem 3.1 we assume that the first c indices are 

79\79=(0*). (Necessity:) Let z* = (x*, 0") be a global minimum. For every 0 E ,T 
construct the convex sets 

KI(O) = { y ' y > /  

f(x,O) 
fl(x,O) 

. . . . . .  

f~(~,o) 

for at least one x E F = ( 0  *) } 

and/s as in the proof of Theorem 3.1. First we claim that the system 

/(x, o) </(z*) 
/~(~, o) < o, i E 79\79=(0') 
�9 EF:(O*) 

is inconsistent. (Consistency would imply 

f(x,O) ,< f(z*) 
f~(~, o) < o, i e 79\79=(0*) 

for some 

x E F y ( 0 )  

by the GSC property. Hence it would follow that x E F(0) ,  contradicting global 
optimality of z*.) After the separation of the two convex sets we conclude that 
(3.2) holds for every x E F=(0*).  If u0 = u0(0) = 0 for some 0 E F ,  then (3.3) 
would hold for every x E F=(0*).  But there exists ~: E F(0)  C F=(0*),  again by 
the GSC, such that (3.4) holds. Since z* is also assumed to be globally cooperative, 
the rest of the necessity proof of Theorem 3.1 applies. 
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(Sufficiency:) The right-hand inequality in (3.1) holds for every z = (x, 0) E 
{F=(0*),  ~'} and hence for every z = (x, 0), where x E F(O), by the GSC. So 
f (z*)  <~ f ( z )  for every z E F.  �9 

Note the following special case: If f i( . ,  0) : R ~ --+ R, i E P are faithfully 
convex functions (see, e.g., [4]), then the set F = (0") is a linear subspace. In this 
(rather common) situation the characterization of optimality reduces to, essentially, 
unconstrained optimization in the x space. 

A special class of PCPs are convex programs. They are recovered in the next 
section. 

5. Convex Programming 

Every convex program (P) is a PCP for every splitting z = (x, 0). Using the fact 
that local and global optima coincide, the remarks (i) and (ii) from Section 3, and 
the observation that convexity is not required in the proofs of saddle-point theorems 
for the sufficiency parts, we immediately have the following characterization of 
optimality for the convex case. 

THEOREM 5.1. Consider a convex program (P). For an arbitrary splitting of the 
variable z, let z* = (x*, 0") be its feasible point, where x* is an optimal solution 
of the convex program ( P, 0"). Then z* is an optimal solution of ( P ) if and only 
if, there exists a vector function 

~z " Jr M N(O*) --+ R~_ 

such that the inequalities (3.1) hold for every z = (x, 0), given by (3.9), and every 
u E R  c +. 

EXAMPLE 5.2. Consider the convex program 

Min f = Z l + Z 3  
S.t. 

:i = + - 2 .< 0 

f 2 = ( Z l _ 2 )  2 + ( z 2 - 2 )  2 - 2 ~ < 0  (5.1) 

f3 = e-Z3 _ 1 ~< 0. 

The KKT conditions are not satisfied at the feasible solution z 1 = z~ = 1, z~ = 0. 
Hence these conditions cannot establish optimality of z* = (z*). 

However, (5.1) is a PCP. Using the splitting, say, Zl = 01, z2 = 02 and z3 = x, we 
note that P=(0*) = {1, 2}, Or = {0"}, and F~(O) = R,  where 0* = (0~) E R 2, 
0~ = 0~ = 1. The point z* = (0", x*), where x* = 0, is optimal if, and only if, 
there exists a multiplier function fi3 >/0 such that 

z +  3(e 1) :>o 
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for every x, by Theorem 5.1. Such a multiplier is fi3 = 1. Optimality of z* canalso 
be verified using other splittings. 

Our next objective is to formulate two kinds of methods for calculating global 
optima of PCPs. 

6. An Exact Penalty Function 

Global optimality can also be characterized without a cooperation of the feasible 
points or the sandwich condition. In their absence we will require the existence 
of the KKT points for every 0 E .T. (For a recently introduced class of convex 
functions f i ( .  0) : R n --+ R, i E 79 with the property that every optimal solution 
is a KKT point, see [24].) 

We denote by f~_(z) -- max{0, f i ( z ) } ,  i E 79 and, for a vector function r : 
R p --+ R m, with non-negative components ri (0), i E 79, the penalty function 

P(x,O) = f(x,O) + y~ ri(O)f~(x,O). 
i E 7  9 

Under a condition on the function r, P(x ,  O) is an exact penalty function for the 
program (P):  

THEOREM 6.1. Consider a partly convex program (P) in the form (P, O) and 
a feasible point z* = (x*, 0"), where x* is an optimal solution of  the convex 
program (P, 0"). Assume that for  every 0 E Y: the convex program (P, O) has 
an optimal solution where the Karush-Kuhn-Tucker conditions are satisfied with 
some multipliers ~ = ~(0) ,  i E 79. Let r : R p -+ R m be a vector function with 
components satisfying 

ri(0) > ~2i(0), i E P ,  0 E.T.  (6.1) 

Then z* is a global minimum o f ( P )  if  and only if  z* is a global minimum of  the 
unconstrained program in the x variable 

Min P(x ,  O) (6.2) 
x C R ~ 

Proof. First we note that under the assumptions of the theorem, but for a fixed 
0 E ~', the optimal solutions and the optimal values of the programs (P, 0) and 
(5.2) coincide. (The standard proof, e.g., the one from [6, Theorem 25.1], carries 
through if the "R-regularity" assumption is replaced by the existence of a KKT 
point.) Obviously, z* = (x*, 0") is a global optimal solution of (P) if, and only if, 
0* is a global optimum of the optimal value function 

f(O) =1~n{f(x,O)'fi(x,O) ~0, i E ~ }  
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over ,T. This proves the theorem since ](0)  coincides with the optimal value 
function 

x(O) = Min P(x,O). �9 
x E R  ~ 

Note that the relations (6.1) require that ri be strictly bigger than at least one KKT 
multiplier gi (0), not bigger than the set of all multipliers, at every 0 E .T, i E 79. 

Two unpleasant features of the exact penalty function P(x,  O) are nonsmooth- 
ness (of the functions f~_, i E 79) and a possible loss of continuity. The latter is 
illustrated with the next example. 

EXAMPLE 6.2. 
functions are 

 l(0) = { 

Consider the program from Example 3.6. The two KKT multiplier 

~, i f0  > 0 
c~, i f0  = 0 

where a is some arbitrary fixed non-negative number (e.g., c~ --- 0) and 

Q2(0) = { 0, if 0 > 0 
1, i f0  = 0 .  

Since ~1 (0) is not uniformly bounded on 5 r = [0, c~), the function r(O), satisfying 
(6.1), is necessarily discontinuous. A good choice is 

/ 2, i f0  > 0 
rl(0) 1, i f 0 = 0 '  r 2 ( 0 ) = 2 ,  f o r 0 > / 0 .  

Hence follows the discontinuity of the exact penalty function 

f x + 2 max{O,-xO} + 2 m a x { O , - x  - O}, if 0 # 0 
P(x,O) [ z + 2 m a x { 0 , - x } ,  a t 0 = 0 .  

A differentiable version of the penalty function P(x,  O) is 

~,(x, O) = f(x,O) -k- E ri[fJl-(x,O)] 2 
iE7 9 

where ri, i E P are some scalars. While r can be used in the same way as P(x,  O) 
to solve a PCP, it is not generally an exact penalty function. However, one can still 
obtain an estimate for the speed of weak convergence using KKT multipliers. (In 
what follows we denote by "P(x*) and P (& (0)) the sets of active constraints of the 
programs (P, 0") and (P, 0), at the optimal solutions x* and &(0), respectively.) 

THEOREM 6.3. Consider a partly convex program (P) in the form (P, O) and 
its global optimal solution z* = (x*, 0"), where x* is an optimal solution of the 
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convex program ( P, 0") where the Karush-Kuhn-Tucker condition holds with some 
multipliers fti >1 O, i E P(z*). Then for every set of scalars 

ri> i, i p(z*) 

we have 
-2 
Ui Min f ( z ) -  ~ -7-<, Inf r <~ Min f(z) .  

x E Z  iET~(z,) ~ i z c R N  z EZ  

Proof. First note that the proof from [6, Theorem 25.2] carries through if the 
assumption of "R-regularity" is replaced by the assumption that an optimal solution 
k(0) of the convex program (P, 0), for a fixed 0, is a KKT point. Hence, for every 
0 E U :  

2 

Min f ( x , O ) -  Y~ )L4ri "O-------r- <~ Inf r Min f(x,O). 
xEF(O) x E n  '~ xEF(O) 

The result now follows after specifying 0 = 0* and using the fact that z* = (x*, 0 ' ) ,  
with x* = ~(0"), is a global minimum. �9 

Estimates for the distance between optimal solutions of (P) and r  for a PCP, are 
not yet available. 

Using Theorems 6.1 and 6.2 one can formulate a penalty function method for 
solving the PCP (P):  

For a strictly increasing sequence of m-tuples 

O < r k < r k + l ~ . . .  

solve the program (6.2), i.e., 

Min f(x,O) + E r ~ f ~ ( x , ~  
x E R ~ iE7 ) 
0 E R p 

to obtain a sequence of unconstrained global optimal solutions z k = (x k, Ok), 
k = 0, 1, 2 , . . .  It is well known that, assuming compactness of the perturbed 
feasible set 

{z : f i(z)  <, e, i e 7 ~} 

for some e > 0, every convergent subsequence of {z k} converges to a global 
optimum of (P).  The novelty here is that, under the additional assumption on 
the existence of the KKT points for every O E 9 r ,  it follows from Theorem 6.1 
that, for some sufficiently large k, every global optimum can be obtained as the 
limit of such a sequence. (The latter is not generally true for an arbitrary non-PCP.) 
Similarly, one can use the function r to calculate a global optimum. Computational 
experience is reported in Section 8. 
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7. A Parametric Optimization Method 

Partly convex programs can be solved by the penalty function method described 
in Section 6. For the sake of comparison, we will also describe a two-level method 
that employs specific features of PCP programs. The method is adapted from input 
optimization (see [26]) and it is based on a marginal value formula. 

First we need more notation. The formula is applied to a sequence of feasible 
points. 

z k = ( x  k,0k), k = 0 , 1 , 2 , . . .  

where O k E U and x k = xk(O k) is an optimal solution of the convex program 
(P, 0k). At every iteration we use the Lagrangian function 

L ~ ( z , u ) =  f ( z ) +  ~ u~f~(z), k = O ,  1 ,2 , . . .  
ic~,\p=(0 ~) 

(introduced earlier for testing global optimality). We recall (see [25, Theorem 2.2]) 
that under the assumption that the set of optimal solutions of P(O k) is nonempty 
and bounded and the mapping F is lower semicontinuous at O k relative to 9 c, there 

exists u k = uk(O) >1 0 in R~ k), where c(k) = card P\P=(Ok),  such that 

< k uk) 
L k (z , u) ~< L k L k 

for every x e F=(O k) = {x " f i (x ,  0 k) <~ O, k e 7~=(0k)} and every u �9 R~ k). 
Hence with every z k one can associate u k, k = 0, 1,2, .... 

In what follows we will consider a path 7 emanating from O k and on that path 
a sequence 0 m --+ O k, as I --+ cx). Furthermore, we will consider the two limits 

Okl _ O k xkl _ x k 
I k =  lim and s k =  lim 

I10k  - 0kl l  II0k  - 0kl l  

where x kt = x kl (0 ~t) is an optimal solution of the program P(Okt). (For conditions 
that guarantee the existence of these limits see, e.g., [16]. Also we denote z kl = 
(x kt, OA:l). Finally, at each 0 h, we denote by F k the mapping 

F ~ ' O - - +  F ~ ( O ) =  {x" f i ( x , O ) = O ,  i � 9  

The PCP version of the marginal value formula (adapted from [16, 26]), at the k-th 
iteration, follows. 

THEOREM 7.1. Consider the partly convex program P(O) around its arbitrary 
feasible point z k = ( x k, ok), where x k is an optimal solution of the convex program 
P(  Ok ). Suppose that the point-to-set mappings F and F ~  are lower semicontinuous 
at O k relative to 3 z. Also assume that the saddle point (x k, u k) is unique, and that 
the functions 

Vf i " z ~ vfi(z)~ i E {O}U{~\~=(Ok)} 
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are continuous at z k. I f  for some sequence 0 kl --+ O k, the limits I k and s ~ exist, 
then 

lim f(zkl)  -- f ( zk)  = VzL<(zk,  uk) [ Sk 1 
t - ~  - 0k]l ik . �9 ( 7 . 1 )  

If the saddle point is not unique then (7.1) can be replaced by two inequalities of 
the minimax and maximin type. (For details over a "region of stability" see [16, 
Theorem 4.3].) For the sake of simplicity, we will look only at a simple case of the 
marginal value formula, describe a simple numerical method, and then show how 
the method can solve Zermelo's problems. 

If we assume that the constraints of the convex program (P, O k) satisfy Slater's 
condition, i.e., 

There exists & such that f~(~, O k) < 0, i E 

then T'=(0 k) = r and Fff : 0 --+ R n is trivially lower semicontinuous. Also (see, 
e.g., [25]) F is lower semicontinuous at 0 h. Moreover, the KKT conditions are 
satisfied at x k, the Lagrangian becomes 

L < ( z , u ) =  L ( z , u ) =  f ( z ) +  E u j i ( z )  
iE79 

and the x component of the gradient in the right:hand side of (7.1) becomes zero. 
The marginal value formula now assumes a simpler form: 

COROLLARY 7.2. Consider the partly convex program P(  O) around its arbitrary 
feasible point z k = (x k, Ok), where x k is an optimal solution of the convex program 
P(Ok). Assume that the constraints of (P, O k) satisfy Slater's condition, that the 
saddle point (x k, u k) is unique, and that the functions 

V f  i : z -+ f i (z) ,  i E {0} tD P 

are continuous at z k. I f  for some sequence 0 kl -+ O k, the limit I k exists, then 

lim f(zkl) --  f (zk)  = VoL(z k, uk)l k. (7.2) 
II0 k z - 0 k l l  

From now on we will discuss only the formula (7.2). The key observation for 
numerical methods is that on a path 0 -+ O k, along which I k exists and the right- 
hand side in (7.2) is negative, the value of the objective function must locally 
decrease, i.e., f ( z  kl) < f ( z  k) for every 0 kl sufficiently close to 0 k. The simple 
choice of an improvable path can be sought in the form 0 = O k + ad  k, a >/0 for 
some fixed direction d k. Since now 

d k 
l k -- 

Ildkll 
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the elements of d k = (d~) can be chosen by the following simple rule: 

d~ = { 1, if [VoL(z k, uk)]i < 0 
- 1, otherwise, i E 7 9. (7.3) 

This particular choice of d k guarantees negative marginal value and hence it is a 
direction of feasible improvement. The corresponding optimal step size a = ak 
can be determined by solving the program 

Min f ( x (a ) ,  O k + ad k) 
S.t. 

O k + ad k E .T (7.4) 

where x(a)  is an optimal solution of the convex program P(O k + ad k) for some 
a />  0. Since the function x = x(a)  is not generally known explicitly, the program 
(7.4) is solved approximately after testing several values of a. (The Golden Rule 
Method has been used in [5, 28].) If ak > 0 is a satisfactory step size, one 
specifies O k+ 1 ~ ok ._[_ O~ k d k and calculates z k+ 1, a n  optimal solution of the program 
P(Ok+l). We have thus obtained a new feasible point z k+l = (x k+l, 0 k+l) with 
f(z k+l) < f(zk). 

The above method minimizes the optimal value function (as a function of 0) and 
it has a tendency to ignore local minima. If z* is a local minimum of (P) and the 
kth iteration z k sufficiently close to z*, then, under rather weak assumptions (for 
an input optimization case see [25]) one can derive the speed of convergence 

C lf(z k)-/(z*)l<~-, k=l,2,... 

where C is a constant that depends on the global behaviour of the Lagrangian 
around the optimal component 0". The method is typically slow and the present 
version is time consuming. However, the experience suggests that it is reliable for 
the class of piece-wise linear paths (perturbations) if the feasible set Z is "close" 
to being convex. A practical implementation of the method over nonlinear paths is 
the subject of current research. 

8.  Z e r m e l o ' s  P r o b l e m s  

In this section we will identify the classic navigation problems of Zermelo as 
PCPs. We will then solve the problems using the parametric method suggested 
in the preceding section and then verify global optimality by the saddle-point 
characterization from Section 3. 
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X 2 

B o a t  

Speed o f  boa t  v ~  

Speed of stream V 

Fig. 3. Zermelo's navigation problem. 

8.1. ZERMELO'S PCP 

A boat, situated at the origin, is moving with a velocity v of unit magnitude relative 
to a stream of constant speed, say, V -- 2. The problem is to determine a constant 
steering angle 0 that will minimize the time t required to reach a target, say 

(For the sake of comparison we borrow the data from [20].) The dynamics of the 
system is described by the system of differential equations 

dxl 
= 2 +  cos0 

dt 
dx2 

- sin 0. 
dt 

Its solution (with the initial condition Xl (0) = x2(0) = 0) is 

xl = t ( 2 + c o s 0 )  

x2 = ts in0.  

Zermelo's problem can be formulated as 

Min t 
S.t.  

(2t + t c o s 0  - 5) 2 + (t sin0 - 1) 2 ~< 1. (8.1) 

Clearly, this is a PCP. (For every 0, the program is convex in t.) 
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8.2. SOLUTION 

Let us start the parametric method from, say, 

z 0 = (t  ~ 0 ~ 

_- (1.411,30~ 

(Note that t o = 1.411 is the optimal solution for 0 --- 30 ~ Since Slater's condition 
holds at 0 ~ we use the classic Lagrangian 

L(z ,u)  = t + u[(2t + t c o s 0 -  5) 2 + ( t s i n 0 -  1) 2 -  1]. 

The corresponding Lagrange multiplier is u ~ = 0.173 (calculated from the KKT 
condition using the derivatives). Hence 

VoL(z,  u) = 2ut[-(2t  + t cos 0 - 5) sin 0 + (t sin 0 - 1) cos 0] 

and 

VoL(z  ~ u ~ = 0.109. 

Since the derivative is positive, we know that the objective function decreases for 
the choice d o = -1 .  

The step-size problem along d o is now just 

Min t(a) 
S.t. 

300 - a E )r. 

(Here .T is the segment between zero and, roughly, 72 ~ 
The optimal step size is calculated by the Golden Rule Method to be around 

ao = 5.44 ~ Hence 01 = 00 4- a0do = 24.56 ~ with t 1 = 1.406, is a better point. 
In fact, we have found an optimal point! 

8.3. VERIFICATION 

Let us verify, using Theorem 3.1 and a continuity argument, that t* = 1.406, 
0* = 24.560 is a global minimum for the above problem of Zermelo. Slater's 
condition holds at 0*; hence the point z* = (t*, tg*) is locally cooperative. However, 
since Slater's condition holds for every 0 in the interior of 3 r, the cooperation of 
z* extends to all feasible points except the extreme points corresponding to the 
boundary of .T. But the mapping F is continuous at these extreme points (the 
feasible set Z being locally convex), so is the optimal value function. Therefore 
we conclude that optimality of z*, once established for the set 

{I x ] } 
: x E F ( O ) ,  O E i n t ~  C Z  
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extends to the closure of ~(z*), i.e., to the entire feasible set. 
Theorem 3.1 now claims that z* is a global minimum if, and only if, there exists 

a function fi : intY" ~ ~(0) >/0 such that 

t* ~< t +fi(0)[(2t  + t c o s S -  5) 2 + ( t s i n S -  1) 2 -  1] 

for every 0 E intY: and every t. Such a function is 

�89 2 , fi(0) = (20 sin 0 + 5 sin 20 - 24 sin 0)-~. (8.2) 

This function has a U-shaped graph with fi(0) -~ +oc  as 0 approaches the two 
boundary points of ~'. (The function is constructed from the KKT condition at 
0, after substituting for t the smaller of the two roots of t = t(O) in the equality 
constraint.) This confirms global optimality of z*. 

8.4. DISJOINT FEASIBLE SET 

The feasible set of the program (8.1) in the (0, t)-plane relative to the interval 
0 ~< 0 ~< 90 ~ is an oval-shaped convex set. (The steering angles close to 90 ~ or 
negative close to 0 ~ result in the boat missing the target.) 

A graphing of the feasible set on this particular interval, by the computer, has 
produced a "tail", i.e., a broken line emanating from the oval, into the area where 
the feasible set should have been empty. The appearance of the tail warrants another 
look at the problem. First we note that the inequality constraint can be replaced by 
the equation 

(2t + 5 cos 0 - 5) 2 + (t sin 8 - 1) 2 = 1 (8.3) 

without changing locally optimal solutions. Now the classic result of Lagrange 
tells us that, at a local extremum, the gradients of the objective function and the 
constraint are linearly dependent, i.e., 

#o[lo]+2#l[(2t+tcosO-5)(2+cosO)+(tsinO-1)sinO 0 
-(2t+tcosO-5)tsinO+(tsinO-1)tcos• ] = [ 0 ]  

with (#0, #1) 7 ~ 0. Clearly, #1 7 ~ 0 and hence 

- ( 2 t  + t c o s 0  - 5 ) t s i n 0 +  ( t s i n 0 -  1)tcos0 = 0. (8.4) 

The solutions of (8.3) and (8.4) are candidates for local extrema. In order to find 
these, let us note that the equations can be simplified: 

cot 0 = 5 - 2t 

2t sin 0 - (4t 2 - 10t) cos 0 = 5t 2 - 20t + 25. 

Using the substitution 

1 1 
sin 0 - - 

v/1 + cot 2 0 ~/1 + (5 - 2t) 2 
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the second equation becomes 

9t 4 - 120t 3 + 546t 2 - 1000t + 625 = 0. 

Using the method of Weierstrass (see [8]) we can find all four roots simultaneously. 
First we normalize the equation (division by the leading coefficient 9) and then 
start iterating from, say, t o = 4.0, t o = 1.5, t o = 2.1 and t o = 2.9. After only 
five iterations the Weierstrass method has produced the four roots correct to four 
decimal places: 

k tl t2 t3 t4 

0 4.0 1.5 2.1 2.9 

1 4.3190 1.858 2.5175 5.3110 

2 3.4210 1.3449 2.2721 6.2953 

3 3.7816 1.4057 2.1710 5.9751 

4 3.8155 1.4059 2.1836 5.9284 

5 3.8165 1.4059 2.1835 5.9274 

6 3.8165 1.4059 2.1835 5.9274 

The corresponding steering angles for the roots 

t~ = 3.8165, t~ = 1.4059, t~ = 2.1835, t~ = 5.9274 

a r e  

0 ~ = - 2 0 . 9 9 7 0  , 0~=24.560 , 0~=57.6660 , 0 ~ = - 8 . 3 0  . 

The solution (0~, t~) confirms the result obtained by the parametric method, while 
(0~, t~) turns out to be a local maximum. The other two solutions (O~, t~) and 
(0~, t~) are physically unacceptable because with these steering angles the boat 
is definitely going to miss the target. The crucial observation, that explains the 
existence of the tail in the graph, is that sin 0 is a periodic function and hence 
there are also other steering angles that solve (8.4) for t]" and t]. These are, e.g., 
01 -= 171 ~ and t~4 = 159~ ~. The former yields a locally maximal and the latter 
a locally minimal time for the boat to reach the target. Both new steering angles 
are directed against the flow of the river! Using Theorem 3.1 one can establish 
that ~ = (01, t~) is actually a globally maximal solution. The global minimality 
of z* = (8~, t~) extends over the newly "discovered" feasible island with the 
same U-shaped multiplier function ~(0) given by (8.2). It appears that the oval's 
tail has been the computer's way of expressing the fact that there is a disjoint 
part of the feasible set to the right of the oval. (This part could not be plotted by 
the computer because the prescribed interval in 0 was too short). Hence, using an 
alternative approach to optimality, we have reconfirmed that the shape, and actually 
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the number of disjoint feasible subsets, depends on the velocity V of the stream. 
The inter-dependencies can be studied by parametric optimization (e.g., using the 
results on "regions of stability"). Figure 4 depicts a typical two-island feasible set 
situation for a Zermelo problem with a convex target. 

The geometry and the verification of global optima for the three-dimensional 
Zermelo PCPs is analogous to the two-dimensional case but more complicated. We 
will study the three-dimensional case here only briefly, primarily to compare the 
two types of numerical methods introduced in Sections 6 and 7. 

8 . 5 .  T H R E E - D I M E N S I O N A L  Z E R M E L O ' S  P R O B L E M  

The dynamics of an object (say, a torpedo) moving with a velocity of unit magnitude 
relative to a three-dimensional medium is described by the system of differential 
equations 

dxl 
- u + cos r  cos r 

dt 
dx2 
dt --- v + c o s r 1 6 2  

dx3 
= w + s in r 

dt 

where u, v and w are the components of the velocity vector of the medium and r r 
are the corresponding angles with the coordinate axes. The problem of finding the 
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constant steering angles that minimize the time required to reach a convex target 
can be formulated as PCP (with 0 = (r ~b) and x = t). Let us illustrate and solve 
a typical three-dimensional Zermelo's problem. 

Assuming that the object is at time t = 0 at the origin, that the components of 
the velocity vector of the medium are u -- 2, v -- 0, w --- 0 and that the target is 
the unit sphere 

T = z2 " (Zl  - 10)  2 + (z2 - 1) 2 + (z3 - 2 )  2 ~< 1 
Z3 

the problem becomes 

Min t 
s.t. 

(2t + t c o s r 1 6 2  - 10 )  2 + (tcos Cs inr  - 1) 2 + (t s ine  - 2) 2 ~< 1. 

This is a PCP with x = t and 0 = (r r  
Applying the primitive parametric method from the initial point, say, 0 ~ = 

(26 ~ 12~ we obtain the following improvements: 

k Ok: Ck Ck ~(0 k) dkl d~ ak 

0 26 12 3.2276 1 1 2.91 

1 28.91 14.91 3.2146 - 1  1 0.64 

2 28.27 15.55 3.2141 1 1 0.07 

3 28.34 15.62 3.21406 - 1  1 0.01 

4 28.33 15.63 3.21406 

Hence the optimal steering angles are r = 28.33 o and r = 15.63 ~ and the 
corresponding shortest time to reach the target is t* ---- 3.214. Global optimality is 
verified by the arguments analogous to those used in the two-dimensional case. 

8.6. N U M E R I C A L  E X P E R I E N C E  

A variety of Zermelo's problems has been solved by a group of 20 graduate students 
in mechanical and electrical engineering, economics and applied mathematics. 
Using noncommercial programs the success rate has been 75% and 50%, respec- 
tively, for 2- and 3-dimensional problems using various penalty function methods 
and 100%, in each case, using the parametric method. Both methods worked find 
if the initial approximations were chosen from the feasible islands containing the 
optimal solutions. However, while the parametric method has taken an advantage 
of a rather simple oval-shaped feasible set, the penalty function methods strag- 
gled with a rather complicated analytic form of the constraints. The commercial 
versions of the penalty function methods (such as GINO) worked out fine on 2- 
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and 3-dimensional problems for all values of the parameter r above certain limits 
(studied in Section 6). Our numerical experience suggests that a further work on 
the parametric method for solving PCP is warranted and that the method should 
be competitive in situations where the feasible set is relatively simple, the space of 
"parameters" 0 low dimensional, and the constraints are highly nonconvex. 

Zermelo [23] was also studying the situations where the steering angles depend 
on time. He studied this optimal control problem using a variational approach. (This 
is one of the directions where the results of this paper could be generalized.) His 
problems have also been studied by Vincent and Grantham [20] using mathematical 
programming and the classical optimality conditions. 

9. Characterizing Local Optimality 

Local optimality of a feasible point z* = (x*, 0") of a PCP can be characterized 
by the existence of a saddle point over the set (3.9), but additional assumptions are 
required. (An advantage of using (3.9) is that F ~  (0) is generally a larger set than 
F ~  (0) fq N(x*)  and hence the necessary condition is more selective. The program 
from Example 3.4 shows that the existence of a saddle point over the set (3.9) is 
not a characterization of local optimality !) These assumptions are, e.g., uniqueness 
of the optimal solution x* of the convex program (P, 0") and lower semicontinuity 
of the feasible set mapping F : 0 ---+ F(O) at 0", relative to ;P. Recall that the latter 
is a stronger condition than z* assumed to be a locally cooperative. 

The following result has been recently proved in [28]; also see [27]. 

THEOREM 9.1. Consider a PCP and its feasible point z* = (x*, 0"), where x* 
is a unique optimal solution of the convex program (P, 0"). Also assume that the 
point-to-set mapping F is lower semicontinuous at 0", relative to .%. Then z* is a 
local minimum if and only if there exists a vector function 

: n N ( O * )  =+ R c + 

such that 

L<, (z*,u) <~ L<, (z*,~(O*)) <~ L<, (z, 5(O)) (3.1) 

for every 

z = ( x , o )  (3.9) 

where N ( O* ) is some neighbourhood of O*, and every u E R~_. 

Let us make an interesting observation: If z* is a local minimum, but the saddle- 
point condition is not satisfied over the strip (3.9), then the optimal solution z* of 
the program (P, 0"), and hence the optimal solution z* of the program (P) ,  cannot 
be unique. An illustration follows. 
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EXAMPLE 9.2. Consider the PCP program from Example 3.5. The point z~ = 1, 
z~ = 0 is a local minimum, F is a constant mapping, but L < (z, u) has no saddle 
point over the set {F~(O), ~ N N(O*)} = R • N(O*) for any N(O*). Hence we 
conclude that the local minimum is not isolated. 

The claims of Theorem 4.3 extend to local optimality and Theorem 9.1 can be 
strengthened under LSC: 

COROLLARY 9.3. Consider a PCP and its feasible point z* = (x*, 0"), where 
x* is a unique optimal solution of  the convex program (P, 0"). Assume that the 
local sandwich condition is satisfied at 0". Then z* is a local minimum if  and only 
i f  there exists a vector function 

. F n N(O*) - +  R; 

such that the inequalities (3.1) hold for every z = (x, O) on the set (4.2) and every 
u R$. 

10. Partly Linear Constraints 

An important class of PCPs are programs with partly convex objective function 
and partly linear constraints, i.e., f i  (. 0) : R n --+ R, i E P are linear functions. 
The results on optimality can now be applied also in the situations where the con- 
straints are equations. The only essential difference is that the multiplier functions, 
corresponding to the equality constraints, may assume also negative values. Every 
feasible point is now globally cooperative and local optimality still requires lower 
semicontinuity of the feasible set mapping and uniqueness of the optimal solution 
in the complement of "frozen" variables. It is interesting to note that our results are 
applicable in the situations where the classic method of Lagrange fails. One such 
situation is described in the following example (augmented from [13,14]). 

EXAMPLE 10.1. Consider the program 

M i n - z l + z 2  - z  4 
s.t. 

z 2 = 0 
Z 2 - -  g 2 = 0 

--z 3 + z5 -- z~ = 0  

z 2 -  z5 - - z 2 :  0. 

We want to check if, say, z~ : z~ = z~ = z~ = z~ : 0, z~ = z~ = i is a global 
minimum. A simple calculation shows that the Lagrange system 

4 

V f ( z * )  + Z Ai•f i (z*)  = O, Ai E R, i = 1 , . . . ,  4 
i = 1  
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is inconsistent. 
However, we note, after the identification: Zl = 01, zz = Zl, z3 = 02, z4 = 03, 

z5 = x2, z6 = 04, z7 = 85, that the program is partly linear. 
The saddle-point condition for global optimality reduces to 

- 1  ~< ( l + A 2 ) z I + ( A a - A 4 ) z 2 - 0 1 - 0 3 + A 1 0 1 2 - A 2 0 2 - A 3 ( 0 3 + 0 4 2 )  
+.~4(02 -- 02) 

for every z E R 2 and every 0 E ~'. Hence AE = - 1, A3 = A4, yielding 

--1 ~ --01 - -03  + ,~102 + 0 2 -  ,~3(03 -'1-02 + 0 2 - - 0 2 )  (10.1) 

for every 0 E ~'. The feasibility requirement yields both 01 = 0 and 03 + 0 ] + 02 - 
02 = 0. Hence the test for global optimality reduces to 

- 1 ~< -03 + 02. 

This inequality is certainly satisfied for every 0 E .T. (Otherwise 03 > 1, implying 
0f > 02. But this violates the ,X3-term in (10.1) being zero.) Global optimality of 
z* -- (z~) is established. 

Remark. Every program with twice continuously differentiable functions can be 
transformed into a PCP (see [ 11 ]). However, this transformation generally destroys 
some of the useful properties of the original program (e.g., its interior). If an 
interior-preserving transformation of a nonlinear program into a PCP existed, it 
would enable us to extend the above results to the general case. 
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